お店のコメント(スペック情報を含む場合もあり)
内容説明
Statistical learning theory is aimed at analyzing complex data with necessarily approximate models. This book is intended for an audience with a graduate background in probability theory and statistics. It will be useful to any reader wondering why it may be a good idea, to use as is often done in practice a notoriously ?wrong’’ (i.e. over-simplified) model to predict, estimate or classify. This point of view takes its roots in three fields: information theory, statistical mechanics, and PAC-Bayesian theorems. Results on the large deviations of trajectories of Markov chains with rare transitions are also included. They are meant to provide a better understanding of stochastic optimization algorithms of common use in computing estimators. The author focuses on non-asymptotic bounds of the statistical risk, allowing one to choose adaptively between rich and structured families of models and corresponding estimators. Two mathematical objects pervade the book: entropy and Gibbs measures. The goal is to show how to turn them into versatile and efficient technical tools, that will stimulate further studies and results.
商品ジャンル
商品名
最終調査日時
2013/05/04 (Sat) 21:24:35
価格の変動(直近3回 : ¥0は未調査回)
取得日時
販売価格
ポイント
実質価格
在庫状態
2013/05/04 (Sat) 21:24:35
¥7,153
0 %
¥7,153
2012/06/13 (Wed) 03:52:53
¥5,941
0 %
¥5,941
2012/01/23 (Mon) 12:01:53
¥4,831
0 %
¥4,831
サイト内キーワード検索
商品名の検索は通常の商品検索ボックスで。
コメントやスペックなどから検索したい場合はこちらから。
コメントやスペックなどから検索したい場合はこちらから。
広告
![【クリックでお店のこの商品のページへ】Statistical Learning Theory and Stochastic Optimization: Ecole d’Et- de Probabilit-s de Saint-Flour XXXI - 2001 (Lecture Notes in Mathematics) [ペーパーバック]](http://ec2.images-amazon.com/images/I/41-S8%2BiJNFL._BO2,204,203,200_PIsitb-sticker-arrow-click,TopRight,35,-76_AA240_SH20_OU09_.jpg)


